Convergence Rates of Efficient Global Optimization Algorithms
نویسنده
چکیده
In the efficient global optimization problem, we minimize an unknown function f , using as few observations f (x) as possible. It can be considered a continuum-armed-bandit problem, with noiseless data, and simple regret. Expected-improvement algorithms are perhaps the most popular methods for solving the problem; in this paper, we provide theoretical results on their asymptotic behaviour. Implementing these algorithms requires a choice of Gaussian-process prior, which determines an associated space of functions, its reproducing-kernel Hilbert space (RKHS). When the prior is fixed, expected improvement is known to converge on the minimum of any function in its RKHS. We provide convergence rates for this procedure, optimal for functions of low smoothness, and describe a modified algorithm attaining optimal rates for smoother functions. In practice, however, priors are typically estimated sequentially from the data. For standard estimators, we show this procedure may never find the minimum of f . We then propose alternative estimators, chosen to minimize the constants in the rate of convergence, and show these estimators retain the convergence rates of a fixed prior.
منابع مشابه
A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملModify the linear search formula in the BFGS method to achieve global convergence.
<span style="color: #333333; font-family: Calibri, sans-serif; font-size: 13.3333px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-dec...
متن کاملPareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملAn Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems
In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...
متن کاملTesting Soccer League Competition Algorithm in Comparison with Ten Popular Meta-heuristic Algorithms for Sizing Optimization of Truss Structures
Recently, many meta-heuristic algorithms are proposed for optimization of various problems. Some of them originally are presented for continuous optimization problems and some others are just applicable for discrete ones. In the literature, sizing optimization of truss structures is one of the discrete optimization problems which is solved by many meta-heuristic algorithms. In this paper, in or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 12 شماره
صفحات -
تاریخ انتشار 2011